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First-order irreversible phase transitions in a nonequilibrium system: Mean-field analysis
and simulation results
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First-order irreversible phase transitiofhBT’s) between an active regime and an absorbing state are studied
in a single-component, two-dimensional interacting particle system by means of both simulations and a mean-
field analysis. Several features obtained using the mean-field approximation such as the presence of a first-
order IPT and hysteresis effects, are in excellent agreement with simulation results. In addition, extensive
epidemic simulations show that the dynamical critical behavior of the system is by no means scale invariant.
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[. INTRODUCTION spite of this fact, discontinuous IPT’s have not received as
much attention as continuous IPT's. Early resyltgl,15
The study of nonequilibrium systems is relevant to aclaiming the existence of scale invariance in the dynamical
broad scope of phenomena in diverse areas of research suefitical behavior of first-order IPT's were based on inad-
as physics, chemistry, ecology, catalysis, economy, and s@&@quately short-time simulations. However, very recently, we
cial sciences, etd1-3]. An intriguing feature of some of have shown by means of extended simulations that the
these systems is the occurrence of irreversible phase trangiSymptotic dynamical critical behavior is exponentially de-
tions (IPT's) between an active regime and an absorbing®@Ying[16]. A similar controversy has also arisen in the field
state where the system becomes trapped. Typically, contin® reversible transitiongl7]. In this case, the power-law be-
ous transitions to a unique absorbing state belong to the gfavior is |dent_|f|eq as a finite-size effect thgt vanishes in the
rected percolatiofDP) universality clasg4,5]. DP critical thgrmodyna_mm I|.m|t. Furthermore, the existence .Of hys_tgr-
behavior is observed over wide-ranging problems emergin sis, which is a signature of first-order transitions in equilib-

from different disciplines such as quantum particle physicsﬁ"ejlr(;1 jfyls;grn;s has so far, not been explored in detail in the

[6], irreversible catalytic syst_en{S_B,?_,t_}], and contact pro- The aim of this work is to present a detailed study of the
cesseq9]. Several models with infinitely many absorbing s orer irreversible critical behavior observed in a two-
configurations have been proposed but no new universalitfimensional(2D) cellular automaton, called the “stochastic
class has been fourjd0]. Thus, the DP universality class is game of life” (SGL) [15], based on two complementary tech-
apparently extremely robust. In contrast to the abovenigues, namely, extensive numerical simulations and a mean-
mentioned phase transition to infinitely many absorbing confield approach. The SGL was inspired by the deterministic
figurations that belongs to the DP class, a new type of IPT'Sonway’s “game of life”[18] and simulates the dynamics of

to multiple absorbing states has recently been considered. b “society of living individuals” in the presence of noise.
these systems, the activity is coupled to a field conserved by

th_e dynamics. Due to this coupling, a n_ew_ur_m_/ersallty class Il. THE MODEL AND THE MONTE CARLO
arises that seems to gather systems with infinitely many ab-
- . . . SIMULATION METHOD
sorbing configurations where the order parameter is coupled
to a conserved fielfil1]. The model is a probabilistic cellular automat@@A) (to-

There is another group of models whose critical behaviotalistic CA) defined on a square lattice. Each site of the lat-
belong to a new universality class different from Q2]. A tice oj; can take only two values;;=1{0,1} and interacts
relevant feature is shared by these models. The number @fith its eight nearest neighbors. Using the notation of the
particles is conserved modulo 2. This is the reason why thi€onway’s game of lifd 18] (for details sed15]), we will
class is often called parity conserving universality class. Theefer to a site in the state;;=1 (o;;=0) as a “living site”
great activity in the field of second-order continuous IPT's(“dead site”), respectively. The system evolves in time ac-
has led us to a good understanding of such a systems. Ugerding to the following rules(i) a living site whose neigh-
fortunately, continuous IPT’s have never been observed iborhood is deadempty or has one living site, will die in the
experiments and consequently most of the activity in thenext time step,(ii) a living site whose neighborhood has
field is mainly of theoretical interest. more than three living sites, will die in the next time step,

On the other hand, it is discontinuous or first-order IPT's(iii ) a living site whose neighborhood has two or three living
that are most commonly observed in experimgit3]. In  sites, will survive with a probabilityp, in the next time step,

(iv) a dead site whose neighborhood is déawhpty or has
one living site, will remain in this state in the next time step,
*Present address: Department of Physics, Bar-llan University(v) a dead site whose neighborhood has more than three liv-
Ramat-Gan 52900, Israel. ing sites, will remain in this state in the next time stép) a
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FIG. 1. Plots of the density of living sites[in arbitrary units X

(AU)] versusp,,, keepingps=0.10.(a) Results obtained using the
MF approximation. Full dotgplus sign$ indicate stabl€unstable
fixed points of Eq(1). (b) Stationary simulation results obtained for
a lattice of sizelL=400.

FIG. 2. 3D plot of the potentidV(x) (AU) versusx (AU) andpy,
for ps=0.10 fixed, corresponding to the SGL model. Darkest areas
correspond to the potential minima.

dead site whose neighborhood has exactly two living s;itesby numerically solvingf(x)=0. Stable{unstabl¢ solutions

will become a living site with a probabilityp,, in the next of f(x)=0 are indicated with full dotgplus signj, respec-

time step,(vi) A dead site whose neighborhood has exactlyt'vely' It is clear from Eq.(1) thatx=0 is always a solution

g . . - o of f(x)=0, which is stable for alps and p, values. The
g:rr]eeesll\élpr)\g sites, will always become a living site in the nEthqutionx=O has only been indicated in Fig(al for the

As it is common in CA models, all sites are updated Si_values ofpy, where this is the only fixed point of the system.

multaneously. The parameters of the model have been Sé[’_his solution corresponds to the single absorbing state de-
lected in such a way that, fgs,=1 andp,=0, the deter- void of living sites of the lattice model. In addition, for larger
) S )

ministic Conway’s game of life is recovered. Initializing the values ofpy, there are two different branches of stationary

system with a random distribution of living sites, the SGLSOIC;J(;'lonS ;hat)_fcoalet_sce 2t the MF Cm'g?' ﬁ?}mtbthhat IS a
evolves until reaching a stationary state. Simulation resylt§@ddie-node bifurcation. igurea. resembles the behavior

; f the densityx obtained by means of simulations. In fact,
show that the phase diagram of the systqm {ersuspy) ol . . : :
consists of two phases, namely, extincti@evoid of living Fig. 1(b) shows a jump in the density around the coexist-

; o ot .. __gence point. However, since the MF approach neglects fluc-
igf\?e?f; a living phase, separated by a first-order Crltlcaf)uations, the value of the critical point given by this approach

is an underestimate.
An alternative way to study the system is based on the
idea of a potential functiol (x), defined through the follow-

In order to obtain a qualitative description of the model, alnd relation:
mean-field(MF) analysis has been performed. This analysis,
often called single site MF analysis, completely neglects cor- d_X_ f(x)=— dV(x) %)
relations among sites. The method consists in writing down a dt
equation for the time evolution of the density of living sites.
Then, only local processes that increase or decrease the deiecording to this definition, the stablenstable fixed points
sity, according to the evolution rules, are considered. Theorrespond to the minim@naximg of V(x), respectively. It
result is the following nonlinear first-order differential equa- is easy to show that

tion
dv(x) (dV(x))z
dt | dx |

Ill. MEAN-FIELD APPROACH

dx ©)
It =x[ —x8—8x"y — 28x®y?—56x°y3— 70x*y*— 56(1
a5 26 7 8 which indicates that the system always evolves towards the
~Ps)X7y+28(1+ pg)xy°+ (28p,— 8)xy' —y7], potential valleys. Figure 2 shows a 3D plot of the potential
(1)  V(x) versusx and py,, keepingps=0.10 constant. Darkest
regions on the surface indicate the minima\éfx). The
wherex is the density of living sites ang=1—x. The fixed valley observed at=0 corresponds to the stationary absorb-
points of Eq.(1) satisfydx/dt=f(x) =0, and the stable ones ing state of the lattice model. Figure 3 shows sections of the
correspond to the stationary states of the lattice model. Figeotential surface/(x) for four different values ofp,. For
ure 1(@) shows a plot ok versusp,, for p;=0.10, obtained values ofp, large enoughsee Figs. @) and 3b)], a mini-
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mum at a higher density= x;,, and a maximum are observed. tively. Since fluctuations are not considered in the MF treat-
This minimum corresponds to a stationary state that belongsent, the MF living phase is larger than the one obtained by
to the living phase. Fops fixed, the relative position ok,  simulations.
with respect tox=0 depends on the value @f,. As men-

tioned above, the minimum at a higher density vanishes

when decreasingy,. The pair of valuesfS,pp) where this

minimum just disappears is the MF critical point. Further We have studied in detail two main aspects of the SGL
decreasingp, leads to potential functions displaying only model, namely, the memory effects and the dynamical criti-
one minimum ax=0 [see Fig. &)]. Figures 3c) and 3d) cal behavior.
clearly show that the minimum at a higher density disappears

at a valuex, well abovex=0. In other words, a sharp jump

is observed in the order parameter of the systghwhen

decreasing the value of the paramepgr. Then, the MF Hysteresis effects are studied by means of the spontane-
approach predicts a first-order IPT that is in full agreemen@us creation metho@SCM) [20]. In the SCM, a very small
with simulation result$15]. It should be noted that the order creation rate of living sitegactive site$ « is introduced for

of the IPT predicted by the MF approximation rare|y agreeSiteS whose neighborhood is devoid of I|V|ng sites. First, a
with simulation results in low dimensions. In fact, while pair of values ps,p,) within the living phase is chosen and
simulations often show second-order irreversible critical bethe system evolves until reaching a stationary state. Then,
havior in low dimensions, MF approaches may predict aone of the parameters of the models is kept constpgir(
first-order behavior. In some cases, by including processeis casg¢and the other onepp) is varied stepwise after time
such as a high diffusion in a lattice model, the second-order

IV. RESULTS AND DISCUSSION

A. Memory effects

critical behavior may turn into a first-order behavior, as pre- 1——1— , ' I—
dicted by the MF approacH9]. L (a) ] L (b)
It should be noticed that as the system always evolves tc
the potential valleys the stationary state will depend upon the 0.75- 1 075F -
initial density, i.e..xo=x(t=0) [see Figs. @) and 3b)]. In
simulations, the stationary state depends not only on the ini< LIFE a8 LIFE
tial density but also on the spatial distribution of living sites. 0.5 4 05 -
The MF critical points can be calculated by solving the
following system of equations:
0.25 4 02sf s
) I EXTINCTION
dV(x) PN dV(x) -0 @ EXTINCTION
dx dx? . %95 o5 o 1 % s 05 om 1
P, P,

Figures 4a) and 4b) show the phase diagram obtained by FIG. 4. Phase diagram of the SGL model Results obtained
means of the MF approximation and simulations, respecby solving Egqs.(4). (b) Simulation results taken from RefL5].
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FIG. 5. Hysteresis loops of the densiky(AU) obtained by FIG. 6. AreaA (AU) of the hysteresis loops shown in Fig. 5

means of the SCM using a lattice of sike=200 for different re- versus’[[1 (in lattice updates)?. The full curve corresponds to the
laxation timest, (in lattice updatesand keepingp;=0.10 andk best second-order polynomial fittidg=s(1.93—47.98%). More de-
=0.0005 fixed. Loops are generated counterclockysse arrows tails in the text.

intervals oft, updates so as to complete a cycle. After the relaxation time the inner the loop. This feature is quan-
' .

updates, a value of the densitys recorded and averages are t'f'led_ in Fig. 6 where a plot of the are®of the loops versus
taken over different loops. It should be noticed that fortr ~ IS Shown. Figure 6 shows that the loop area is not a
second-order IPT's, a spontaneous creation rate of actiinear function oft;* but can be approximated using the
sites will destroy the phase transition. However, for first-following second-order polynomial:

order IPT’s a small spontaneous creation rate will not change

the nature of the transition but turns the absorbing state into A=s(K1=Ky9), ®)

a fluctuating state of average density allowing for the heres=t-1 K.=1.93 andK.=47.98. It should be noted
. . =4 ) 1— 4. y 2— . .

stydy of hystere5|s eﬁeqts. The presence of hysteresis effec}[%at for infinite relaxation timeg—0), memory effects have

will be a signature of a first-order IPT. Figure 5 shows a plot

of x versusp,, for different relaxation times, obtained by to vanish. This condition is satisfied by E®).
means of the SCM. The hysteresis effects evident in Fig. 5
can be explained on the basis of the MF approaee Fig.

3). In fact, a small creation rate does not alter the MF sce- The dynamical critical behavior of second-order IPT is
nario except for the positions of the potential minima that areusually studied by means of the epidemic analysis) [4,9]
slightly shifted. Starting the loop at a living stationary statewhere the time evolution of relevant quantities display a
[absolute minimum in Fig. @)], the value of the parameter power-law behavior at the critical point. EA has been also
py is decreased stepwise after a relaxation ttmeThen, a  applied to first-order 1PT14,15. These results claim the
characteristic evolution of the potential functidM{(x) fol- existence of scale invariance in the dynamical critical behav-
lows the sequence Figs(tl8—3(d). It should be noted that ior of first-order IPT. We will show that for this system the
the MF approach neglects density fluctuations. Howeverasymptotic time behavior is exponentially growing or decay-
density fluctuations can be thought as small oscillationsng depending on the value of the parameter.

around the value of the potential minimum. These fluctua- EA simulations are normally initialized placing a small
tions allow for the transition between minima, i.e., there is acolony of active sites into an otherwise absorbing state. This
finite probability to overcome the potential barrier. Figure 5choice allows the system to quickly achieve the asymptotic
shows that for different values ¢f, the decreasing branches time regime. It is shown, however, that this choice is mis-
are closer to each other than the corresponding growintgading for the present model and hinder the real asymptotic
branches. This asymmetry observed in the hysteresis loops iisgime that is by no means universal.

due to the asymmetry of the potential function. In fact, start- We studied the time evolution of the average number of
ing at a living stationary statesee Fig. 8a)], the potential living sitesN(t), initializing the simulation with colonies of
barrier decreases when decreasing the value of the parametéifferent sizes. For cellular automata with parallel updating,
p, and eventually vanishdsee Fig. 8d)]. However, starting timet is given in number of updates. We have developed an
at a low density stationary stafsee Fig. )], the system optimized algorithm that allows us to monitor the time evo-
always has to overcome a potential barrier in order to jumpution of the system up to very long times and free from
to the higher density state, even though this state is the alfinite-size effects. The algorithm is initialized placing some
solute minimum of the potentigkee Fig. 83)]. The waiting  activity around the center of the sample within a region of
time t,,, which is the average time needed to overcome theize | XI (I<L), i.e., att=0 only a sublattice of sizel (
potential barrier, grows with the height of the barrier. For+1)X(I+1) needs to be visited. Since activity may only
t,~t,, a critical drop of the stable phase develops that evenarise in the neighborhood of active sitésee evolution
tually spreads over the whole system. That is why the longerules, we first find the coordinates of the outermost sites

B. Epidemics analysis
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with respect to the center along each direction of the system, [ e T

namely, |7, 172, 17", and17'®, and in the next time step I

update a system of sizé){**—I7""+2) x (Iy'**~17""+2).

It should be noticed that this improved method is dynamic 10°F

sincel 7' 172,11 and|'® are fluctuating quantities. Av- -

erages are taken over 1910° different samples. %
1

- p, = 0.47190
AL p, = 047188
" p, = 0.47186

Figure 7@ shows a plot ofN(t) versust obtained by
using an initial colony of five living site&alled glider in the
Conway’s game of life zogoand for different values opy,
keeping ps=0.10 fixed. We clearly observe that the L p,=0.47184
asymptotic regime is reached after 10* updates and it is  p,=0.47182 (a)
possible to identify subcritical and supercritical curves. The o2l il il il il
apparent critical behavior observed @{=0.47188 is be- 10 10 10 10 10 10
cause the asymptotic regime has not yet been achieved for t
this value of the parameter. Eventually, this curve will expo- 0P B B B B
nentially grow or decay. The point p{(=0.10,p,
=0.47188) is actually a good estimate of the upper spinodal
point [19]. In addition, N(t) displays a short-time regime
(t<10%) and an intermediate-time regime fx0t<10%), the
last resembling a plateau behavior. Figufk)7s similar to
Fig. 7(a) but a log-lineal scale is used. It is clearly observed
that the asymptotic regime is exponential. It should be noted
that N(t) is remarkably sensitive to tiny changes in the val-
ues of the parameters that is characteristic of first-order
IPTs. i p, = 0.47184

Figure 7c) is similar to Fig. Ta) except for the use of a 2 ,p",_,o'4,7182
bigger colony to initialize the EA. The following three main 1079

| p. =0.47190

-1 b

10" p, = 0.47188 E
 p, = 0.47186 ]

M T
4x10°  5x10°

1x10°

differences are observed) the short-time behavior present t
in Fig. 7(a) is absent(ii) the intermediate-time regime domi- ——
nates from the very beginning, arii) the asymptotic re- " (c)

gime is achieved soonet£ 10°). These features can be un- 10F E
derstood on the basis of the potentiglx). Let us focus on F ]
both Fig. 3c), which shows the potential functiov(x) at i
criticality, and a potential function slightly above criticality 3]
displaying two minimanot shown in Fig. 3 For low initial

densities, Eq(3) indicates thak will flow to x=0, the den- L
sity of the stationary absorbing state. This explains M) - P, =0.47195

displays a decreasing short-time behavior in Fi@).7De- 10°F Py, = 047191 E
creasing short-time behavior appears to be a universal feature t p,=0.47188 ]
observed, to our best knowledge, in first-order IPT to a L p,=0.47170

unique absorbing statg7,15,16,19. As mentioned above, N Y ES P ER Y
density fluctuations can be considered as oscillations around 10 10 10 10 10 10
the potential minima. In some few cases, a density fluctua- t

tion may overcome the potential barrier placing the system in
a region whereV(x)~const. Consequently, the system can

re”.‘a'” for a long time in &.1 reglqn frge f'rom driving forces eterpy,, keepingps=0.10 fixed. From top to bottom, the values of
until anoth_er_ large fI_uctuatlon drlveS_ it elther towands 0 pp indicated in the figures correspond to each curve, respectively.
or to the living stationary state. This explains the plateayy) The EA was initialized using a small colony of living siteb)
observed in the intermediate-time regime and the asymptotigem (a) but using a log-lineal scale. The exponential decay and
regime as well. Another way of corroborating the above ex-growth of N(t) are clearly observedc) The EA was initialized by

planation is provided by Fig.(@). In this case, the initial randomly filling a 50<50 sublattice located in the middle of the
density is in a region wherg(x) ~const from the beginning. system with probabilityp=0.15.

That is why the short-time behavior is absent and only the
plateau and the asymptotic behavior remain.

The intermediate-time behavior can also be explained b
means of Eq(1l). Figure 8 shows a plot afx/dt versusx for
a value ofpy, slightly below the critical poinpg . Within the d_X: —r—a(x—xg)? ®)
neighborhood of the critical poirfi(x) can be approximated dt o

N(t)

s

FIG. 7. Log-log plots of the average number of living sikég)
(AU) versust (in lattice updatesfor different values of the param-

)l?y a Taylor expansion up to second order
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FIG. 8. Plot ofdx/dt (AU) versusx (AU) obtained using Eq.
(2). In this case, the stationary state of the system is the absorbing
state. Note, however, that the values of the parameters are close to
the critical point.

where Ky, —r) are the coordinates of the vertex amés the (b) ]

curvature of the parabola. Notice thatand a are positive 107 e

numbers. Fop,<pg, the system will flow towards the only 10 10t 10

stable fixed point atk=0. Now, we estimate the time

needed to reach the fixed point. It is clear from Eg). that FIG. 9. Log-log plots of the average number of living sité)

the main contribution to this time comes from the immediate(AU) versust (in lattice updatesfor different values of the param-
vicinity of the maximum, since the time spent there domi-eterp,, keepingp,=0.10 fixed. From top to bottom, the values of
nates all other time scales in the system. The result is givep, indicated in the figure correspond to each curve, respectiiagly.
by the following equation: The complete evolution o (t), (b) A region is shown where the
dynamical behavior of the curve indicated with full squares re-
sembles a power law.

- Xo—A dx 1 N
— f 2-—tan (Valra), (7)

Xo+A I +a(X—X)?
tions and a MF approximation. The results obtained by
where 0<A<1 is a constant. Then, we conclude from Eq.means of the single site mean-field analysis are in remark-
(7) that whenp,, gets closer to the critical point, i.e., when ably good qualitative agreement with simulation results. The
the parameter approaches zero, the time needed by themean-field theory predicts the first-order IPT observed in the
system to reach the fixed point becomes longer. So, the dyattice model and qualitatively explains both hysteresis ef-
namics of the system becomes very slow in the neighborfects and the dynamical critical behavior observed in the epi-
hood of a “ghost” fixed point. This finding is in complete demic analysis. The intermediate plateau behavior observed
agreement with simulation results. In fact, Figa)7shows in epidemic simulations is the result of the critical slowing
that the plateau behavior last longer fpgy nearer to the down predicted by the MF approach. It should be remarked
upper spinodal point, i.e., the time spent to finally reach thehat results based on inadequately short-time simulations are
fixed point increases. The position of the coexistence point isot sufficient to ensure the existence of a power-law behav-
very difficult to determine for a discontinuous IPT. Constantior. In fact, the asymptotic time regime of this system be-
coverage simulationgl6,21] have proven to give very good haves exponentially. Then, the occurrence of power laws in
estimates of the position of this point that is very close to thehe dynamical critical behavior of first-order IPT's can be
coexistence point for weak first-order IPT’s. Finally, it safely ruled out. This last finding conciliates the behavior of
should be remarked that the intermediate regime is charadirst-order IPT's with their counterpart in equilibrium sys-
teristic of this model and it is not a universal feature oftems where it is well established that the existence of short
first-order IPT[16]. range correlations inhibits the observation of scale invari-
Figure 9 shows two plots dfi(t) versust for values ofp,  ance.
in the critical neighborhood obtained by using an initial
colony of five living sites. Figure ®) shows that the short-
time behavior of the system can be easily confused with a ACKNOWLEDGMENTS
power-law behaviof14,15. .
This work was supported by CONICET, UNLP, ANPCyT,
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