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First-order irreversible phase transitions in a nonequilibrium system: Mean-field analysis
and simulation results

Roberto A. Monetti*
Instituto de Investigaciones Fisicoquı´micas Teo´ricas y Aplicadas (INIFTA), UNLP, CONICET, CIC (Bs. As.), C. C. 16 Suc. 4,

1900 La Plata, Argentina
~Received 13 June 2001; published 5 December 2001!

First-order irreversible phase transitions~IPT’s! between an active regime and an absorbing state are studied
in a single-component, two-dimensional interacting particle system by means of both simulations and a mean-
field analysis. Several features obtained using the mean-field approximation such as the presence of a first-
order IPT and hysteresis effects, are in excellent agreement with simulation results. In addition, extensive
epidemic simulations show that the dynamical critical behavior of the system is by no means scale invariant.
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I. INTRODUCTION

The study of nonequilibrium systems is relevant to
broad scope of phenomena in diverse areas of research
as physics, chemistry, ecology, catalysis, economy, and
cial sciences, etc.@1–3#. An intriguing feature of some o
these systems is the occurrence of irreversible phase tr
tions ~IPT’s! between an active regime and an absorb
state where the system becomes trapped. Typically, con
ous transitions to a unique absorbing state belong to the
rected percolation~DP! universality class@4,5#. DP critical
behavior is observed over wide-ranging problems emerg
from different disciplines such as quantum particle phys
@6#, irreversible catalytic systems@3,7,8#, and contact pro-
cesses@9#. Several models with infinitely many absorbin
configurations have been proposed but no new univers
class has been found@10#. Thus, the DP universality class
apparently extremely robust. In contrast to the abo
mentioned phase transition to infinitely many absorbing c
figurations that belongs to the DP class, a new type of IP
to multiple absorbing states has recently been considere
these systems, the activity is coupled to a field conserved
the dynamics. Due to this coupling, a new universality cl
arises that seems to gather systems with infinitely many
sorbing configurations where the order parameter is cou
to a conserved field@11#.

There is another group of models whose critical behav
belong to a new universality class different from DP@12#. A
relevant feature is shared by these models. The numbe
particles is conserved modulo 2. This is the reason why
class is often called parity conserving universality class. T
great activity in the field of second-order continuous IPT
has led us to a good understanding of such a systems.
fortunately, continuous IPT’s have never been observed
experiments and consequently most of the activity in
field is mainly of theoretical interest.

On the other hand, it is discontinuous or first-order IPT
that are most commonly observed in experiments@13#. In

*Present address: Department of Physics, Bar-Ilan Univer
Ramat-Gan 52900, Israel.
1063-651X/2001/65~1!/016103~7!/$20.00 65 0161
uch
o-

si-
g
u-
i-

g
s

ty

-
-

’s
In

by
s
b-
d

r

of
is
e

n-
in
e

spite of this fact, discontinuous IPT’s have not received
much attention as continuous IPT’s. Early results@14,15#
claiming the existence of scale invariance in the dynam
critical behavior of first-order IPT’s were based on ina
equately short-time simulations. However, very recently,
have shown by means of extended simulations that
asymptotic dynamical critical behavior is exponentially d
caying@16#. A similar controversy has also arisen in the fie
of reversible transitions@17#. In this case, the power-law be
havior is identified as a finite-size effect that vanishes in
thermodynamic limit. Furthermore, the existence of hyst
esis, which is a signature of first-order transitions in equil
rium systems, has so far, not been explored in detail in
field of IPT’s.

The aim of this work is to present a detailed study of t
first-order irreversible critical behavior observed in a tw
dimensional~2D! cellular automaton, called the ‘‘stochast
game of life’’ ~SGL! @15#, based on two complementary tec
niques, namely, extensive numerical simulations and a me
field approach. The SGL was inspired by the determinis
Conway’s ‘‘game of life’’@18# and simulates the dynamics o
a ‘‘society of living individuals’’ in the presence of noise.

II. THE MODEL AND THE MONTE CARLO
SIMULATION METHOD

The model is a probabilistic cellular automaton~CA! ~to-
talistic CA! defined on a square lattice. Each site of the l
tice s i j can take only two valuess i j 5$0,1% and interacts
with its eight nearest neighbors. Using the notation of
Conway’s game of life@18# ~for details see@15#!, we will
refer to a site in the states i j 51 (s i j 50) as a ‘‘living site’’
~‘‘dead site’’!, respectively. The system evolves in time a
cording to the following rules:~i! a living site whose neigh-
borhood is dead~empty! or has one living site, will die in the
next time step,~ii ! a living site whose neighborhood ha
more than three living sites, will die in the next time ste
~iii ! a living site whose neighborhood has two or three livi
sites, will survive with a probabilityps in the next time step,
~iv! a dead site whose neighborhood is dead~empty! or has
one living site, will remain in this state in the next time ste
~v! a dead site whose neighborhood has more than three
ing sites, will remain in this state in the next time step,~vi! a

y,
©2001 The American Physical Society03-1
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ROBERTO A. MONETTI PHYSICAL REVIEW E65 016103
dead site whose neighborhood has exactly two living si
will become a living site with a probabilitypb in the next
time step,~vi! A dead site whose neighborhood has exac
three living sites, will always become a living site in the ne
time step.

As it is common in CA models, all sites are updated
multaneously. The parameters of the model have been
lected in such a way that, forps51 and pb50, the deter-
ministic Conway’s game of life is recovered. Initializing th
system with a random distribution of living sites, the SG
evolves until reaching a stationary state. Simulation res
show that the phase diagram of the system (ps versuspb)
consists of two phases, namely, extinction~devoid of living
sites! and a living phase, separated by a first-order criti
curve @15#.

III. MEAN-FIELD APPROACH

In order to obtain a qualitative description of the model
mean-field~MF! analysis has been performed. This analys
often called single site MF analysis, completely neglects c
relations among sites. The method consists in writing dow
equation for the time evolution of the density of living site
Then, only local processes that increase or decrease the
sity, according to the evolution rules, are considered. T
result is the following nonlinear first-order differential equ
tion

dx

dt
5x@2x828x7y228x6y2256x5y3270x4y4256~1

2ps!x
3y5128~11ps!x

2y61~28pb28!xy72y8#,

~1!

wherex is the density of living sites andy512x. The fixed
points of Eq.~1! satisfydx/dt5 f (x)50, and the stable one
correspond to the stationary states of the lattice model.
ure 1~a! shows a plot ofx versuspb , for ps50.10, obtained

FIG. 1. Plots of the density of living sitesx @in arbitrary units
~AU!# versuspb , keepingps50.10. ~a! Results obtained using th
MF approximation. Full dots~plus signs! indicate stable~unstable!
fixed points of Eq.~1!. ~b! Stationary simulation results obtained fo
a lattice of sizeL5400.
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by numerically solvingf (x)50. Stable~unstable! solutions
of f (x)50 are indicated with full dots~plus signs!, respec-
tively. It is clear from Eq.~1! that x50 is always a solution
of f (x)50, which is stable for allps and pb values. The
solution x50 has only been indicated in Fig. 1~a! for the
values ofpb where this is the only fixed point of the system
This solution corresponds to the single absorbing state
void of living sites of the lattice model. In addition, for large
values ofpb , there are two different branches of stationa
solutions that coalesce at the MF critical point that is
saddle-node bifurcation. Figure 1~a! resembles the behavio
of the densityx obtained by means of simulations. In fac
Fig. 1~b! shows a jump in the densityx around the coexist-
ence point. However, since the MF approach neglects fl
tuations, the value of the critical point given by this approa
is an underestimate.

An alternative way to study the system is based on
idea of a potential functionV(x), defined through the follow-
ing relation:

dx

dt
5 f ~x!52

dV~x!

dx
. ~2!

According to this definition, the stable~unstable! fixed points
correspond to the minima~maxima! of V(x), respectively. It
is easy to show that

dV~x!

dt
52S dV~x!

dx D 2

, ~3!

which indicates that the system always evolves towards
potential valleys. Figure 2 shows a 3D plot of the potent
V(x) versusx and pb , keepingps50.10 constant. Darkes
regions on the surface indicate the minima ofV(x). The
valley observed atx50 corresponds to the stationary absor
ing state of the lattice model. Figure 3 shows sections of
potential surfaceV(x) for four different values ofpb . For
values ofpb large enough@see Figs. 3~a! and 3~b!#, a mini-

FIG. 2. 3D plot of the potentialV(x) ~AU! versusx ~AU! andpb

for ps50.10 fixed, corresponding to the SGL model. Darkest ar
correspond to the potential minima.
3-2
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FIG. 3. Sections of the potentialV(x) ~AU!
shown in Fig. 2 corresponding to different value
of the parameterpb , ~a! pb50.45, ~b! pb50.35,
~c! pb

c50.3131, and~d! pb50.20.
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mum at a higher densityx5xh and a maximum are observe
This minimum corresponds to a stationary state that belo
to the living phase. Forps fixed, the relative position ofxh
with respect tox50 depends on the value ofpb . As men-
tioned above, the minimum at a higher density vanis
when decreasingpb . The pair of values (ps

c ,pb
c) where this

minimum just disappears is the MF critical point. Furth
decreasingps leads to potential functions displaying on
one minimum atx50 @see Fig. 3~d!#. Figures 3~c! and 3~d!
clearly show that the minimum at a higher density disappe
at a valuexc well abovex50. In other words, a sharp jum
is observed in the order parameter of the system~x! when
decreasing the value of the parameterpb . Then, the MF
approach predicts a first-order IPT that is in full agreem
with simulation results@15#. It should be noted that the orde
of the IPT predicted by the MF approximation rarely agr
with simulation results in low dimensions. In fact, whi
simulations often show second-order irreversible critical
havior in low dimensions, MF approaches may predic
first-order behavior. In some cases, by including proces
such as a high diffusion in a lattice model, the second-or
critical behavior may turn into a first-order behavior, as p
dicted by the MF approach@19#.

It should be noticed that as the system always evolve
the potential valleys the stationary state will depend upon
initial density, i.e.,x05x(t50) @see Figs. 3~a! and 3~b!#. In
simulations, the stationary state depends not only on the
tial density but also on the spatial distribution of living site

The MF critical points can be calculated by solving t
following system of equations:

dV~x!

dx
50`

d2V~x!

dx2
50. ~4!

Figures 4~a! and 4~b! show the phase diagram obtained
means of the MF approximation and simulations, resp
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tively. Since fluctuations are not considered in the MF tre
ment, the MF living phase is larger than the one obtained
simulations.

IV. RESULTS AND DISCUSSION

We have studied in detail two main aspects of the S
model, namely, the memory effects and the dynamical c
cal behavior.

A. Memory effects

Hysteresis effects are studied by means of the spont
ous creation method~SCM! @20#. In the SCM, a very small
creation rate of living sites~active sites! k is introduced for
sites whose neighborhood is devoid of living sites. First
pair of values (ps ,pb) within the living phase is chosen an
the system evolves until reaching a stationary state. Th
one of the parameters of the models is kept constant (ps in
this case! and the other one (pb) is varied stepwise after time

FIG. 4. Phase diagram of the SGL model.~a! Results obtained
by solving Eqs.~4!. ~b! Simulation results taken from Ref.@15#.
3-3
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ROBERTO A. MONETTI PHYSICAL REVIEW E65 016103
intervals of t r updates so as to complete a cycle. Aftert r
updates, a value of the densityx is recorded and averages a
taken over different loops. It should be noticed that
second-order IPT’s, a spontaneous creation rate of ac
sites will destroy the phase transition. However, for fir
order IPT’s a small spontaneous creation rate will not cha
the nature of the transition but turns the absorbing state
a fluctuating state of average densityk, allowing for the
study of hysteresis effects. The presence of hysteresis ef
will be a signature of a first-order IPT. Figure 5 shows a p
of x versuspb for different relaxation timest r obtained by
means of the SCM. The hysteresis effects evident in Fig
can be explained on the basis of the MF approach~see Fig.
3!. In fact, a small creation rate does not alter the MF s
nario except for the positions of the potential minima that
slightly shifted. Starting the loop at a living stationary sta
@absolute minimum in Fig. 3~a!#, the value of the paramete
pb is decreased stepwise after a relaxation timet r . Then, a
characteristic evolution of the potential functionV(x) fol-
lows the sequence Figs. 3~b!–3~d!. It should be noted tha
the MF approach neglects density fluctuations. Howe
density fluctuations can be thought as small oscillatio
around the value of the potential minimum. These fluct
tions allow for the transition between minima, i.e., there i
finite probability to overcome the potential barrier. Figure
shows that for different values oft r , the decreasing branche
are closer to each other than the corresponding grow
branches. This asymmetry observed in the hysteresis loo
due to the asymmetry of the potential function. In fact, sta
ing at a living stationary state@see Fig. 3~a!#, the potential
barrier decreases when decreasing the value of the param
pb and eventually vanishes@see Fig. 3~d!#. However, starting
at a low density stationary state@see Fig. 3~d!#, the system
always has to overcome a potential barrier in order to ju
to the higher density state, even though this state is the
solute minimum of the potential@see Fig. 3~a!#. The waiting
time tw , which is the average time needed to overcome
potential barrier, grows with the height of the barrier. F
t r;tw , a critical drop of the stable phase develops that ev
tually spreads over the whole system. That is why the lon

FIG. 5. Hysteresis loops of the densityx ~AU! obtained by
means of the SCM using a lattice of sizeL5200 for different re-
laxation timest r ~in lattice updates! and keepingps50.10 andk
50.0005 fixed. Loops are generated counterclockwise~see arrows!.
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the relaxation time the inner the loop. This feature is qu
tified in Fig. 6 where a plot of the areaA of the loops versus
t r

21 is shown. Figure 6 shows that the loop area is no
linear function of t r

21 but can be approximated using th
following second-order polynomial:

A5s~K12K2s!, ~5!

wheres[t r
21 , K151.93, andK2547.98. It should be noted

that for infinite relaxation time (s→0), memory effects have
to vanish. This condition is satisfied by Eq.~5!.

B. Epidemics analysis

The dynamical critical behavior of second-order IPT
usually studied by means of the epidemic analysis~EA! @4,9#
where the time evolution of relevant quantities display
power-law behavior at the critical point. EA has been a
applied to first-order IPT@14,15#. These results claim the
existence of scale invariance in the dynamical critical beh
ior of first-order IPT. We will show that for this system th
asymptotic time behavior is exponentially growing or deca
ing depending on the value of the parameter.

EA simulations are normally initialized placing a sma
colony of active sites into an otherwise absorbing state. T
choice allows the system to quickly achieve the asympto
time regime. It is shown, however, that this choice is m
leading for the present model and hinder the real asympt
regime that is by no means universal.

We studied the time evolution of the average number
living sitesN(t), initializing the simulation with colonies of
different sizes. For cellular automata with parallel updatin
time t is given in number of updates. We have developed
optimized algorithm that allows us to monitor the time ev
lution of the system up to very long times and free fro
finite-size effects. The algorithm is initialized placing som
activity around the center of the sample within a region
size l 3 l ( l !L), i.e., at t50 only a sublattice of size (l
11)3( l 11) needs to be visited. Since activity may on
arise in the neighborhood of active sites~see evolution
rules!, we first find the coordinates of the outermost sit

FIG. 6. AreaA ~AU! of the hysteresis loops shown in Fig.
versust r

21 (in lattice updates)21. The full curve corresponds to th
best second-order polynomial fittingA5s(1.93247.98s). More de-
tails in the text.
3-4
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with respect to the center along each direction of the syst
namely,l x

min ,l x
max,l y

min , and l y
max, and in the next time step

update a system of size (l x
max2 l x

min12) x (l y
max2 l y

min12).
It should be noticed that this improved method is dynam
sincel x

min ,l x
max,l y

min , andl y
max are fluctuating quantities. Av

erages are taken over 1052108 different samples.
Figure 7~a! shows a plot ofN(t) versust obtained by

using an initial colony of five living sites~called glider in the
Conway’s game of life zoo! and for different values ofpb

keeping ps50.10 fixed. We clearly observe that th
asymptotic regime is reached aftert.104 updates and it is
possible to identify subcritical and supercritical curves. T
apparent critical behavior observed atps50.471 88 is be-
cause the asymptotic regime has not yet been achieved
this value of the parameter. Eventually, this curve will exp
nentially grow or decay. The point (ps50.10,pb

50.471 88) is actually a good estimate of the upper spino
point @19#. In addition, N(t) displays a short-time regim
(t,102) and an intermediate-time regime (102,t,104), the
last resembling a plateau behavior. Figure 7~b! is similar to
Fig. 7~a! but a log-lineal scale is used. It is clearly observ
that the asymptotic regime is exponential. It should be no
that N(t) is remarkably sensitive to tiny changes in the v
ues of the parameters that is characteristic of first-or
IPT’s.

Figure 7~c! is similar to Fig. 7~a! except for the use of a
bigger colony to initialize the EA. The following three ma
differences are observed:~i! the short-time behavior presen
in Fig. 7~a! is absent;~ii ! the intermediate-time regime dom
nates from the very beginning, and~iii ! the asymptotic re-
gime is achieved sooner (t'103). These features can be un
derstood on the basis of the potentialV(x). Let us focus on
both Fig. 3~c!, which shows the potential functionV(x) at
criticality, and a potential function slightly above criticalit
displaying two minima~not shown in Fig. 3!. For low initial
densities, Eq.~3! indicates thatx will flow to x50, the den-
sity of the stationary absorbing state. This explains whyN(t)
displays a decreasing short-time behavior in Fig. 7~a!. De-
creasing short-time behavior appears to be a universal fea
observed, to our best knowledge, in first-order IPT to
unique absorbing state@7,15,16,19#. As mentioned above
density fluctuations can be considered as oscillations aro
the potential minima. In some few cases, a density fluct
tion may overcome the potential barrier placing the system
a region whereV(x)'const. Consequently, the system c
remain for a long time in a region free from driving force
until another large fluctuation drives it either towardsx50
or to the living stationary state. This explains the plate
observed in the intermediate-time regime and the asymp
regime as well. Another way of corroborating the above
planation is provided by Fig. 7~c!. In this case, the initial
density is in a region whereV(x)'const from the beginning
That is why the short-time behavior is absent and only
plateau and the asymptotic behavior remain.

The intermediate-time behavior can also be explained
means of Eq.~1!. Figure 8 shows a plot ofdx/dt versusx for
a value ofpb slightly below the critical pointpb

c . Within the
neighborhood of the critical pointf (x) can be approximated
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yby a Taylor expansion up to second order

dx

dt
52r 2a~x2x0!2, ~6!

FIG. 7. Log-log plots of the average number of living sitesN(t)
~AU! versust ~in lattice updates! for different values of the param
eterpb , keepingps50.10 fixed. From top to bottom, the values o
pb indicated in the figures correspond to each curve, respectiv
~a! The EA was initialized using a small colony of living sites.~b!
Idem ~a! but using a log-lineal scale. The exponential decay a
growth of N(t) are clearly observed.~c! The EA was initialized by
randomly filling a 50350 sublattice located in the middle of th
system with probabilityp50.15.
3-5
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ROBERTO A. MONETTI PHYSICAL REVIEW E65 016103
where (x0 ,2r ) are the coordinates of the vertex anda is the
curvature of the parabola. Notice thatr and a are positive
numbers. Forpb,pb

c , the system will flow towards the only
stable fixed point atx50. Now, we estimate the timet
needed to reach the fixed point. It is clear from Eq.~6! that
the main contribution to this time comes from the immedi
vicinity of the maximum, since the time spent there dom
nates all other time scales in the system. The result is g
by the following equation:

t52E
x01D

x02D dx

r 1a~x2x0!2
52

1

Aar
tan21~Aa/rD!, ~7!

where 0,D!1 is a constant. Then, we conclude from E
~7! that whenpb gets closer to the critical point, i.e., whe
the parameterr approaches zero, the time needed by
system to reach the fixed point becomes longer. So, the
namics of the system becomes very slow in the neighb
hood of a ‘‘ghost’’ fixed point. This finding is in complet
agreement with simulation results. In fact, Fig. 7~a! shows
that the plateau behavior last longer forpb nearer to the
upper spinodal point, i.e., the time spent to finally reach
fixed point increases. The position of the coexistence poin
very difficult to determine for a discontinuous IPT. Consta
coverage simulations@16,21# have proven to give very goo
estimates of the position of this point that is very close to
coexistence point for weak first-order IPT’s. Finally,
should be remarked that the intermediate regime is cha
teristic of this model and it is not a universal feature
first-order IPT@16#.

Figure 9 shows two plots ofN(t) versust for values ofpb
in the critical neighborhood obtained by using an init
colony of five living sites. Figure 9~b! shows that the short
time behavior of the system can be easily confused wit
power-law behavior@14,15#.

V. CONCLUSIONS AND FINAL REMARKS

In summary, the first-order critical behavior of the SG
model has been studied using extensive computer sim

FIG. 8. Plot ofdx/dt ~AU! versusx ~AU! obtained using Eq.
~1!. In this case, the stationary state of the system is the absor
state. Note, however, that the values of the parameters are clo
the critical point.
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tions and a MF approximation. The results obtained
means of the single site mean-field analysis are in rem
ably good qualitative agreement with simulation results. T
mean-field theory predicts the first-order IPT observed in
lattice model and qualitatively explains both hysteresis
fects and the dynamical critical behavior observed in the e
demic analysis. The intermediate plateau behavior obse
in epidemic simulations is the result of the critical slowin
down predicted by the MF approach. It should be remark
that results based on inadequately short-time simulations
not sufficient to ensure the existence of a power-law beh
ior. In fact, the asymptotic time regime of this system b
haves exponentially. Then, the occurrence of power laws
the dynamical critical behavior of first-order IPT’s can b
safely ruled out. This last finding conciliates the behavior
first-order IPT’s with their counterpart in equilibrium sys
tems where it is well established that the existence of sh
range correlations inhibits the observation of scale inva
ance.
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FIG. 9. Log-log plots of the average number of living sitesN(t)
~AU! versust ~in lattice updates! for different values of the param
eterpb , keepingps50.10 fixed. From top to bottom, the values o
pb indicated in the figure correspond to each curve, respectively~a!
The complete evolution ofN(t), ~b! A region is shown where the
dynamical behavior of the curve indicated with full squares
sembles a power law.
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